DNS/DNSSEC Workshop

DNS Refresher

This document is a result of work by the Network Startup Resource Center (NSRC at http://www.nsrc.org). This document may be freely copied, modified, and otherwise re-used on the condition that any re-use acknowledge the NSRC as the original source.

Overview

- Goal of this session
- What is DNS?
- How is DNS built and how does it work?
- How does a query work ?
- Record types
- Caching and Authoritative
- Delegation: domains vs zones
- Finding the error: where is it broken?

Goal of this session

- We will review the basics of DNS, including query mechanisms, delegation, and caching.
- The aim is to be able to understand enough of DNS to be able to configure a caching DNS server, and troubleshoot common DNS problems, both local and remote (on the Internet)

What is DNS?

System to convert names to IP addresses:
 nsrc.org. => 128.223.157.19

www.afrinic.net. => 2001:42d0::200:80:1

... and back:

128.223.157.19 => nsrc.org.

d.2.4.1.0.0.2.ip6.arpa. => www.afrinic.net.

What is DNS?

- Other information can be found in DNS:
 - where to send mail for a domain
 - who is responsible for this system
 - geographical information
 - etc…
- How do we look this information up?

Basic DNS tools

Using the host command:

```
# host nsrc.org.
```

nsrc.org. has address 128.223.157.19

```
# host 128.223.157.19
```

19.157.223.128.in-addr.arpa domain name pointer nsrc.org.

Basic DNS tools

Host with IPv6:

host www.afrinic.net

www.afrinic.net has IPv6 address

2001:42d0::200:80:1

host 2001:42d0::200:80:1

d.2.4.1.0.0.2.ip6.arpa domain name pointer www.afrinic.net.

Basic DNS tools

 Try this yourself with other names – first lookup the names below, then do the same for the IP address returned:

```
www.yahoo.com
www.nsrc.org
ipv6.google.com
```

- Does the lookup of the IP match the name ?
 Why ?
- Where did the 'host' command find the information ?

How is DNS built?

How is DNS built?

DNS is hierarchical

 DNS administration is shared – no single central entity administrates all DNS data

This distribution of the administration is called delegation

How does DNS work?

- Clients use a mechanism called a resolver and ask servers – this is called a query
- The server being queried will try to find the answer on behalf of the client
- The server functions recursively, from top (the root) to bottom, until it finds the answer, asking other servers along the way - the server is referred to other servers

How does DNS work?

- The client (web browser, mail program, ...)
 use the OS's resolver to find the IP address.
- For example, if we go to the webpage www.yahoo.com:
 - the web browser asks the OS"I need an IP for www.yahoo.com"
 - the OS looks in the resolver configuration for details of the server to ask, and sends the query
- On UNIX, /etc/resolv.conf is where the resolver is configured

A DNS query

Query detail with tcpdump

- On the server, run tcpdump as root:
 - \$ sudo tcpdump —s 1500 -n port 53
- In another window/screen do:
 - \$ host circa.ecs.vuw.ac.nz
 - circa.ecs.vuw.ac.nz has address 130.195.5.10
 - circa.ecs.vuw.ac.nz mail is handled by 0
 - kaukau.ecs.vuw.ac.nz.

Query detail – example output

```
18:14:03.723243 IP 103.10.233.88.38541 > 130.195.6.10.53: 31507% [1au] A? circa.ecs.vuw.ac.nz. (48) 18:14:03.724492 IP 130.195.6.10.53 > 103.10.233.88.38541: 31507*- 1/4/3 A 130.195.5.10 (198)
```

18:14:03.725216 IP 103.10.233.88.13650 > 130.195.5.12.53: 45724% [1au] AAAA? circa.ecs.vuw.ac.nz. (48) 18:14:03.726586 IP 130.195.5.12.53 > 103.10.233.88.13650: 45724*- 0/1/1 (93)

18:14:03.726951 IP 103.10.233.88.40996 > 130.195.5.12.53: 60113% [1au] MX? circa.ecs.vuw.ac.nz. (48) 18:14:03.728569 IP 130.195.5.12.53 > 103.10.233.88.40996: 60113*- 1/4/4 MX kaukau.ecs.vuw.ac.nz. 0 (221)

Query detail with wireshark

```
    + Expression...
    ≜ Clear
    ✓ Apply

ऑ F<u>i</u>lter∶
                                                                  Protocol Info
No. .
        Time
                                    Source
                                                 Destination
                                                 10.10.2.171
      1 0.000000
                                    69.4.231.52
                                                                   HTTP
                                                                            Continuation or non-HTTP traffi
      2 0.000477
                                    10.10.2.171 69.4.231.52
                                                                   TCP
                                                                            43076 > http [ACK] Seg=1 Ack=429
      3 0.026605
                                    Olicom cb:4f Broadcast
                                                                            Who has 10.10.2.168? Tell 10.10
                                                                   ARP
                                                                            Conf. Root = 32768/0/00:0f:b5:97
                                    Netgear 97:7: Spanning-tree-(fc STP
      4 0.073463
      5 0.074800
                                    Olicom cb:4f Broadcast
                                                                   ARP
                                                                            Who has 10.10.2.168? Tell 10.10
      6 0.206011
                                    Olicom cb:4f Broadcast
                                                                   ARP
                                                                            Who has 10.10.2.168? Tell 10.10
      7 0.207065
                                                                   NBNS
                                                                            Name query NB WVLKA0<1c>
                                    10.10.2.178 10.10.2.255
                                                                            Solicit
      8 0.214690
                                    fe80::8d4a:d-ff02::1:2
                                                                   DHCPv6
      9 0.224232
                                                 239.255.255.250
                                                                   SSDP
                                                                            M-SEARCH * HTTP/1.1
                                    10.10.2.180
     10 0.290652
                                    69.4.231.52
                                                                  HTTP
                                                                            [TCP Retransmission]
                                                                                                 Continuation
                                                 10.10.2.171
                                                                            43076 > http [ACK] Seg=1 Ack=14
     11 0.291095
                                                 69.4.231.52
                                                                   TCP
                                    10.10.2.171
      12 0 444050
                                    10 10 2 166
                                                 192 248 8 97
                                                                   DNIS
                                                                            Standard query A tsclient dos
  Frame 1 (1514 bytes on wire, 1500 bytes captured)
  Ethernet II, Src: Olicom_cb:4f:a2 (00:00:24:cb:4f:a2), Dst: HewlettP_8c:91:8b (00:1a:4b:8c:91:8b)
  Internet Protocol, Src: 69.4.231.52 (69.4.231.52), Dst: 10.10.2.171 (10.10.2.171)
▶ Transmission Control Protocol, Src Port: http (80), Dst Port: 43076 (43076), Seq: 1, Ack: 1, Len: 1448
Hypertext Transfer Protocol
  [Packet size limited during capture: HTTP truncated]
     00 la 4b 8c 91 8b 00 00 24 cb 4f a2 08 00 45 00
                                                          ..K.... $.0...E.
0000
0010 05 dc 78 cb 40 00 2b 06 00 00 45 04 e7 34 0a 0a
                                                          ..x.@.+. ..E..4..
```


Resolver configuration

- So how does your computer know which server to ask to get answers to DNS queries?
 - On UNIX, look in /etc/resolv.conf
- Look now in the file, and verify that you have a 'nameserver' statement of the form:

nameserver a.b.c.d

or

nameserver ip:v6:ad:dr:es:ss

- ... where a.b.c.d is the IPv4/IPv6 of a functioning DNS server
- Why can't this be a "domain name"?

Finding the root...

 The first query is directed to one of the thirteen root nameservers e.g.

192.112.36.4 (g.root-servers.net.)

- How does the server know where to reach the root servers?
- Chicken-and-egg problem
- Each nameserver has a list of the root nameservers (a – m.root-servers.net) and their IPv4 and IPv6 addresses
 - In BIND, named.root

Using 'dig' to get more details

- The 'host' command is limited in its output

 good for lookups, but not enough for debugging.
- We use the 'dig' command to obtain more details
- dig shows a lot of interesting stuff...

dig nsrc.org - gives more details

```
; <<>> DiG 9.8.3-P1 <<>> nsrc.org
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 38112
;; flags: gr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 1
:: OPT PSEUDOSECTION:
; EDNS: version: 0, flags: do; udp: 4096
;; QUESTION SECTION:
                                 ΙN
                                         Α
;nsrc.org.
:: ANSWER SECTION:
                        84851
                                         Α
                                                 128.223.157.19
                                 ΤN
nsrc.org.
:: AUTHORITY SECTION:
                        58315
                                 ΙN
                                         NS
                                                 phloem.uoregon.edu.
nsrc.org.
                                         NS
nsrc.org.
                        58315
                                 ΙN
                                                  ruminant.uoregon.edu.
nsrc.org.
                        58315
                                 ΤN
                                         NS
                                                  rip.psg.com.
;; Query time: 0 msec
;; SERVER: 127.0.0.1#53(127.0.0.1)
;; WHEN: Sat Feb 14 18:32:18 2015
  MSG SIZE rcvd: 133
```



```
noc# dig www.afrinic.net any
; <<>> DiG 9.4.2 <<>> any www.afrinic.net
;; global options:
                    printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 36019
;; flags: gr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 6, ADDITIONAL: 10
;; OUESTION SECTION:
;www.afrinic.net.
                             ANY
                         ΙN
;; ANSWER SECTION:
www.afrinic.net. 477
                         ΙN
                            AAAA
                                      2001:42d0::200:80:1
www.afrinic.net. 65423
                             Α
                                      196.216.2.1
                         ΤN
;; AUTHORITY SECTION:
afrinic.net.
                 65324
                                      secl.apnic.net.
                         IN
                              NS
                                      sec3.apnic.net.
afrinic.net. 65324
                             NS
                         ΙN
             65324
afrinic.net.
                         IN NS
                                      nsl.afrinic.net.
afrinic.net.
               65324
                                      tinnie.arin.net.
                         IN NS
              65324
afrinic.net.
                                      ns.lacnic.net.
                         IN
                             NS
afrinic.net.
                65324
                              NS
                                      ns-sec.ripe.net.
                         ΙN
;; ADDITIONAL SECTION:
ns.lacnic.net.
                                      200.160.0.7
                151715
                         ΙN
                              Α
ns.lacnic.net.
                65315
                         ΙN
                              AAAA
                                      2001:12ff::7
ns-sec.ripe.net. 136865
                                      193.0.0.196
                             Α
                         ΙN
                             AAAA
ns-sec.ripe.net. 136865
                                      2001:610:240:0:53::4
                         ΙN
nsl.afrinic.net. 65315
                              Α
                                      196.216.2.1
                         ΙN
tinnie.arin.net. 151715
                         IN A
                                      168.143.101.18
secl.apnic.net. 151715
                         IN
                                      202.12.29.59
secl.apnic.net. 151715
                                      2001:dc0:2001:a:4608::59
                         IN AAAA
sec3.apnic.net. 151715
                                      202.12.28.140
                         IN A
sec3.apnic.net. 151715
                         ΙN
                              AAAA
                                      2001:dc0:1:0:4777::140
;; Query time: 1 msec
;; SERVER: 196.200.218.1#53(196.200.218.1)
;; WHEN: Tue May 27 08:48:13 2008
;; MSG SIZE rcyd: 423
```


dig output

- Some interesting fields:
 - flags section: qr aa ra rd
 - status
 - answer section
 - authority section
 - TTL (numbers in the left column)
 - query time
 - server
- Notice the 'A' and 'AAAA' record type in the output.

Record types

Basic record types:

– A, AAAA: IPv4, IPv6 address

– NS:
NameServer

– MX: Mail eXchanger

– CNAME: Canonical name

(alias)

– PTR: Reverse information

Caching vs Authoritative

- In the dig output, and in subsequent outputs, we noticed a decrease in query time if we repeated the query
- Answers are being cached by the querying nameserver, to speed up requests and save network resources
- The TTL value controls the time an answer can be cached
- DNS servers can be put in two categories: caching and authoritative

Caching vs Authoritative: authoritative

- Authoritative servers typically only answer queries for data over which they have authority
 - i.e. data for which they have an external copy, from disk (file or database)
- If they do not know the answer, they will point to a source of authority, but will not process the query recursively.

Caching vs Authoritative: caching

- Caching nameservers act as query forwarders on behalf of clients, and cache answers for later.
- Can be the same software (often is), but mixing functionality (recursive/caching and authoritative) is discouraged (security risks + confusing)
- The TTL of the answer is used to determine how long it may be cached without requerying.

TTL values

- TTL values decrement and expire
- Try repeatedly asking for the A record for www.yahoo.com:
 - # dig www.yahoo.com
- What do you observe about the query time and the TTL?

SOA

Let's query the SOA for a domain:

SOA

- The two fields highlighted are:
 - ns.<domain>
 - the SOA (Start Of Authority), which the administrator sets to the name of the « source » server for the domain data (this is not always the case)
 - root.<domain>
 - the RP (Responsible Person), which is the email address (with the first @ replaced by a '.') to contact in case of technical problems.

SOA

- The other fields are:
 - serial: the serial number of the zone: this is used for replication between two nameservers
 - refresh: how often a replica server should check the master to see if there is new data
 - retry: how often to retry if the master server fails to answer after refresh.
 - expire: when the master server has failed to answer for too long, stop answering clients about this data.
- Why is expire necessary?

Running a caching nameserver

- Running a caching nameserver locally can be very useful
- Easy to setup, for example on FreeBSD:
 - add named_enable="YES" to /etc/rc.conf
 - start named:

/etc/rc.d/named start

 What is a good test to verify that named is running?

Running a caching nameserver

- When you are confident that your caching nameserver is working, enable it in your local resolver configuration i.e.
 - /etc/resolv.confnameserver 127.0.0.1

Delegation

- We mentioned that one of the advantages of DNS was that of distribution through shared administration. This is called delegation.
- We delegate when there is an administrative boundary and we want to turn over control of a subdomain to:
 - a department of a larger organization
 - an organization in a country
 - an entity representing a country's domain

Delegation

Delegation: Domains vs Zones

 When we talk about the entire subtree, we talk about domains

 When we talk about part of a domain that is administered by an entity, we talk about zones

Delegation: Domains vs Zones

Finding the error: using doc

- When you encounter problems with your network, web service or email, you don't always suspect DNS.
- When you do, it's not always obvious what the problem is – DNS is tricky.
- A great tool for quickly spotting configuration problems is 'doc'
- /usr/ports/dns/doc install it now!
- Let's do a few tests on screen with doc...

Conclusion

- DNS is a vast subject
- It takes a lot of practice to pinpoint problems accurately the first time – caching and recursion are especially confusing
- Remember that there are several servers for the same data, and you don't always talk to the same one
- Practice, practice, practice!
- Don't be afraid to ask questions...

Questions?

?

